
DBMS

UNIT -IV

Normalization in a Database

It is the processes of reducing the redundancy of data in the table and also improving

the data integrity.

Without Normalization in SQL, we may face many issues such as

1. Insertion anomaly - It occurs when we cannot insert data to the table

without the presence of another attribute

2. Update anomaly - It is a data inconsistency that results from data

redundancy and a partial update of data.

3. Deletion Anomaly - It occurs when certain attributes are lost because of

the deletion of other attributes.

Normalization is a way of organizing the data in the database. Normalization

entails organizing the columns and tables of a database to ensure that their

dependencies are properly enforced by database integrity constraints. It usually

divides a large table into smaller ones, so it is more efficient.

1st Normal Form (1NF)

In this Normal Form, we tackle the problem of atomicity. Here atomicity means

values in the table should not be further divided. In simple terms, a single cell

cannot hold multiple values. If a table contains a composite or multi-valued

attribute, it violates the First Normal Form.

In the above table, we can clearly see that the Phone Number column has two

values. Thus it violated the 1st NF. Now if we apply the 1st NF to the above table

we get the below table as the result.

https://www.edureka.co/blog/what-is-mysql/

By this, we have achieved atomicity and also each and every column have

unique values.

2nd Normal Form (2NF)

The first condition in the 2nd NF is that the table has to be in 1st NF. The table

also should not contain partial dependency. Here partial dependency means the

proper subset of candidate key determines a non-prime attribute. For example

Consider the table

This table has a composite primary key Emplyoee ID, Department ID. The non-

key attribute is Office Location. In this case, Office Location only depends

on Department ID, which is only part of the primary key. Therefore, this table

does not satisfy the second Normal Form.

To bring this table to Second Normal Form, we need to break the table into two

parts. Which will give us the below tables:

https://www.edureka.co/blog/primary-key-in-sql/

 As you can see we have removed the partial functional dependency that we

initially had. Now, in the table, the column Office Location is fully dependent on

the primary key of that table, which is Department ID.

Now that we have learnt 1st and 2nd normal forms lets head to the next part of

this Normalization in SQL article.

3rd Normal Form (3NF)

The same rule applies as before i.e., the table has to be in 2NF before

proceeding to 3NF. The other condition is there should be no transitive

dependency for non-prime attributes. That means non-prime attributes (which

doesn’t form a candidate key) should not be dependent on other non-prime

attributes in a given table. So a transitive dependency is a functional

dependency in which X → Z (X determines Z) indirectly, by virtue of X → Y and Y

→ Z (where it is not the case that Y → X)

Let’s understand this more clearly with the help of an example:

In the above table, Student ID determines Subject ID, and Subject

ID determines Subject. Therefore, Student ID determines Subject via Subject

ID. This implies that we have a transitive functional dependency, and this

structure does not satisfy the third normal form.

Now in order to achieve third normal form, we need to divide the table as shown

below:

 As you can see from the above tables all the non-key attributes are now fully

functional dependent only on the primary key. In the first table, columns Student

Name, Subject ID and Address are only dependent on Student ID. In the second

table, Subject is only dependent on Subject ID.

MySQL DBA Certification Training

https://www.edureka.co/mysql-dba
https://www.edureka.co/mysql-dba
https://www.edureka.co/mysql-dba
https://www.edureka.co/mysql-dba

